Automatic Road-sign Detection and Classification Based on Support Vector Machines and Hog Descriptors

نویسندگان

  • A. Adam
  • C. Ioannidis
چکیده

This paper examines the detection and classification of road signs in color-images acquired by a low cost camera mounted on a moving vehicle. A new method for the detection and classification of road signs is proposed based on color based detection, in order to locate regions of interest. Then, a circular Hough transform is applied to complete detection taking advantage of the shape properties of the road signs. The regions of interest are finally represented using HOG descriptors and are fed into trained Support Vector Machines (SVMs) in order to be recognized. For the training procedure, a database with several training examples depicting Greek road sings has been developed. Many experiments have been conducted and are presented, to measure the efficiency of the proposed methodology especially under adverse weather conditions and poor illumination. For the experiments training datasets consisting of different number of examples were used and the results are presented, along with some possible extensions of this work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Signs Recognition using HP and HOG Descriptors Combined to MLP and SVM Classifiers

Detection and recognition of traffic signs in a video streams consist of two steps: the detection of signs in the road scene and the recognition of their type. We usually evaluate globally this process. This evaluated approach unfortunately does not allow to finely analyze the performance of each step. It is difficult to know what step needs to be improved to obtain a more efficient system. Our...

متن کامل

Traffic Sign Detection and Recognition using Features Combination and Random Forests

In this paper, we present a computer vision based system for fast robust Traffic Sign Detection and Recognition (TSDR), consisting of three steps. The first step consists on image enhancement and thresholding using the three components of the Hue Saturation and Value (HSV) space. Then we refer to distance to border feature and Random Forests classifier to detect circular, triangular and rectang...

متن کامل

On-Road Vehicle and Lane Detection

We implement lane detection using edge detection, Hough transforms, and vanishing point filtering in Hough space; the car detection is implemented by using histogram of oriented gradients feature descriptors and classified by linear support vector machines. Hard-negative mining is applied to alleviate detection of false positives; with the information of vanishing point along with prior knowled...

متن کامل

Recognition of Sign and Text Using LVQ and SVM

Traffic Sign Recognition (TSR) is used to regulate traffic signs, warn a driver, and command or prohibit certain actions. Fast real-time and robust automatic traffic sign detection and recognition can support and disburden the driver and significantly increase driving safety and comfort. Automatic recognition of traffic signs is also important for an automated intelligent driving vehicle or for...

متن کامل

Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems

With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014